College Algebra
Name:
Weekly Quiz 8

No Work \Leftrightarrow No Points
 Use Pencil Only \Leftrightarrow Be Neat \& Organized

1. Given $f(x)=\frac{3}{5} x+6$ and $g(x)=\frac{5}{3} x-10$, find
(a) (3 points) $(f \circ g)(x)$
(a) \qquad
(b) (3 points) $(g \circ f)(x)$
(b) \qquad
(c) (1 point) What do you conclude about these two functions?
(c)
2. (3 points) Find the inverse of $f(x)=\sqrt[5]{x-2}$.
3.
4. (3 points) Find the inverse of $f(x)=x^{5}+2$.
5.

. \qquad
4. Given $f(x)=\frac{4}{x-2}$ and $g(x)=\frac{2 x+4}{x}$, find
(a) (3 points) $(f \circ g)(x)$
(a)
(b) (3 points) $(g \circ f)(x)$
(b)
(c) (1 point) What do you conclude about these two functions?
(c)
5. (3 points) Expand: $\log _{3} 81 x^{2}$
5.
6. (3 points) Expand: $\log _{2} \frac{32 \sqrt{x}}{y^{3}}$
6.
7. (4 points) Graph the function $f(x)=3^{x}+2$, its inverse $f^{-1}(x)$, and then complete the chart below.

	Domain	Range
$f(x)$		
$f^{-1}(x)$		

8. (4 points) Find the inverse of $f(x)=\sqrt[4]{-x-2}$, and then complete the chart below.
9. \qquad

	Domain	Range
$f(x)$		
$f^{-1}(x)$		

9. (3 points) Write as a single log: $3 \log _{5} 2+5 \log _{5} x-\frac{1}{5} \log _{5} y$
10.
11. (4 points) Graph the function $f(x)=\left(\frac{1}{4}\right)^{x}-2$, its inverse $f^{-1}(x)$, and then complete the chart below.

	Domain	Range
$f(x)$		
$f^{-1}(x)$		

11. (3 points) Write as a single log: $2-3 \log _{2} x-\frac{3}{4} \log _{2} y$
12. Consider $2+4+6+\cdots+2^{n}=2^{n+1}-2$,
(a) (1 point) Show that it works for $n=1$.
(a)
(b) (5 points) Use mathematical induction to prove the statement is true for all natural numbers n.
